Problem Solving Trajectory for Multiplication

Direct Modeling

- Modeling each of the groups (using counters, tally marks, base-10 blocks, 100chart) and counting the total number of objects
- · Grouping by tens:
 - Counting by ones
 - Counting by tens

Counting Strategies

- Skip-counting by the number of objects in each group 3, 6, 9, 12, so $4 \times 3 = 12$
- Repeated addition

$$6+6+6=18$$
 so $3\times 6=18$

Doubling

$$8 + 8 = 16$$
 and $16 + 16 = 32$, so $4 \times 8 = 32$

· Counting-on

$$3 \times 3 = 9 \rightarrow 10,11,12 \rightarrow \text{so } 4 \times 3 = 12$$

 $4 \times 4 = 16 \rightarrow 15,14,13,12 \rightarrow \text{so } 3 \times 4 = 12$

- · Combination of skip-counting and counting on by one
- · Grouping by tens strategy: Count by 10s

Derived Facts Strategies

- Combination of known facts and addition or counting-on strategies
- Doubling

$$6 \times 4 = 24 \text{ so } 6 \times 8 = 48$$

Squaring

$$6 \times 6 = 36 \rightarrow 36 + 6 = 42 \rightarrow \text{so } 7 \times 6 = 42$$

Add-on

$$6 \times 4 = 24 \rightarrow 24 + 4 = 28 \rightarrow \text{so } 7 \times 4 = 28$$

Take-away

$$10 \times 9 = 90 \rightarrow 90 - 9 = 81 \rightarrow \text{so } 9 \times 9 = 81$$

Grouping Strategies

- Grouping by tens strategy: Direct place value group by 1s, 10s, 10s, etc. $20 \times 4 = 80$ and $3 \times 4 = 12$ and 80 + 12 = 92 so $23 \times 4 = 92$
- Breaking one number into smaller, more manageable groups $4 \times 8 = 32$ and $3 \times 8 = 24$ and 32 + 24 = 56 so $7 \times 8 = 56$

Other Invented Strategies

 Double/half, estimation, compensation, student inventions – children often invent strategies which defy classification. Naming strategies in honor of the inventor reinforces respect for good thinking.

^{**}Standard Algorithm - Not on the trajectory